글
헐 27점. 시간도 중요한가 보다. 결과만 중요하다고 생각했는데...
Zero-indexed arrays A and B consisting of N non-negative integers are given. Together, they represent N real numbers, denoted as C[0], ..., C[N−1]. Elements of A represent the integer parts and the corresponding elements of B (divided by 1,000,000) represent the fractional parts of the elements of C. More formally, A[I] and B[I] represent C[I] = A[I] + B[I] / 1,000,000.
For example, consider the following arrays A and B:
A[0] = 0 B[0] = 500,000
A[1] = 1 B[1] = 500,000
A[2] = 2 B[2] = 0
A[3] = 2 B[3] = 0
A[4] = 3 B[4] = 0
A[5] = 5 B[5] = 20,000
They represent the following real numbers:
C[0] = 0.5
C[1] = 1.5
C[2] = 2.0
C[3] = 2.0
C[4] = 3.0
C[5] = 5.02
A pair of indices (P, Q) is multiplicative if 0 ≤ P < Q < N and C[P] * C[Q] ≥ C[P] + C[Q].
The above arrays yield the following multiplicative pairs:
(1, 4), because 1.5 * 3.0 = 4.5 ≥ 4.5 = 1.5 + 3.0,
(1, 5), because 1.5 * 5.02 = 7.53 ≥ 6.52 = 1.5 + 5.02,
(2, 3), because 2.0 * 2.0 = 4.0 ≥ 4.0 = 2.0 + 2.0,
(2, 4) and (3, 4), because 2.0 * 3.0 = 6.0 ≥ 5.0 = 2.0 + 3.0.
(2, 5) and (3, 5), because 2.0 * 5.02 = 10.04 ≥ 7.02 = 2.0 + 5.02.
(4, 5), because 3.0 * 5.02 = 15.06 ≥ 8.02 = 3.0 + 5.02.
Write a function:
class Solution { public int solution(int[] A, int[] B); }
that, given zero-indexed arrays A and B, each containing N non-negative integers, returns the number of multiplicative pairs of indices.
If the number of multiplicative pairs is greater than 1,000,000,000, the function should return 1,000,000,000.
For example, given:
A[0] = 0 B[0] = 500,000
A[1] = 1 B[1] = 500,000
A[2] = 2 B[2] = 0
A[3] = 2 B[3] = 0
A[4] = 3 B[4] = 0
A[5] = 5 B[5] = 20,000
the function should return 8, as explained above.
Assume that:
N is an integer within the range [0..100,000];
each element of array A is an integer within the range [0..1,000];
each element of array B is an integer within the range [0..999,999];
real numbers created from arrays are sorted in non-decreasing order.
Complexity:
expected worst-case time complexity is O(N);
expected worst-case space complexity is O(1), beyond input storage (not counting the storage required for input arguments).
Elements of input arrays can be modified.
public int solution(int A[], int B[]) {
double divider = 1000000d;
int aLength = A.length;
int bLength = B.length;
if(aLength != bLength) {
return -1;
}
if(aLength == 0 || bLength == 0) {
return -1;
}
double C[] = new double[aLength];
for (int i=0; i<aLength; i++) {
// System.out.println("C["+i+"] : " + (double)B[i] / 1000000);
C[i] = A[i] + (double)B[i] / divider;
System.out.println("C["+i+"] : " + C[i]);
}
return -1;
}
=<== 이건 55점짜리
몰랐던 사실인데, double 에 변수를 저장하면, 그대로 저장이 안되고 변경이 되는 수가 있다고 한다. 그래서 BigDecimal 변수를 사용해야 된다.
// you can also use imports, for example: // import java.util.*; // you can use System.out.println for debugging purposes, e.g. // System.out.println("this is a debug message"); import java.math.*; class Solution { public int solution(int[] A, int[] B) { int size = A.length; BigDecimal C[] = new BigDecimal[size]; for (int i = 0; i < size; i++) { C[i] = BigDecimal.valueOf(A[i]).add(BigDecimal.valueOf((double) B[i] / 1000000d)); } int count = 0; for (int i = 0; i < size; i++) { for (int j = i + 1; j < size; j++) { if (C[i].multiply(C[j]).compareTo(C[i].add(C[j])) >= 0) { count++; if (count > 1000_000_000) { return 1000_000_000; } } } } return count; } }
'프로그래밍 > 알고리즘' 카테고리의 다른 글
BugfixingLeaderSorted (0) | 2014.12.16 |
---|---|
Get Leader of the array in the value that occurs in more than half of the elements of A. (0) | 2014.12.10 |
Min Average Two Slice by Codility (0) | 2014.12.09 |
RECENT COMMENT